Arrel membrane proteins: composition and architecture of identified structures. Protein Sci. 11, 30112 (2002). 10. Grosse, W. et al. Structure-based engineering of a minimal porin reveals loopindependent channel closure. Biochemistry 53, 4826838 (2014). 11. Barbet-Massin, E. et al. Out-and-back 13C-13C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS. J. Biomol. NMR 56, 37986 (2013). 12. Barbet-Massin, E. et al. Fast proton-detected NMR assignment for proteins with rapidly magic angle spinning. J. Am. Chem. Soc. 136, 124892497 (2014). 13. Hong, M. Jakes, K. Selective and substantial 13C labeling of a membrane protein for solid-state NMR investigations. J. Biomol. NMR 14, 714 (1999). 14. Hansen, P. E. Isotope effects in nuclear shielding. Prog. Nucl. Mag. Res. Spectrosc. 20, 20755 (1988). 15. Higman, V. A. et al. Assigning huge proteins inside the solid state: a MAS NMR resonance assignment strategy working with selectively and extensively 13C-labeled proteins. J. Biomol. NMR 44, 24560 (2009). 16. Hiller, M. et al. [2,3-(13)C]-labeling of aromatic residues–getting a head commence within the magic-angle-spinning NMR assignment of membrane proteins. J. Am. Chem. Soc. 130, 40809 (2008). 17. Hong, M. Determination of various –N-(p-amylcinnamoyl) Anthranilic Acid Autophagy torsion angles in proteins by selective and in depth (13)C labeling and two-dimensional solid-state NMR. J. Magn. Reson. 139, 38901 (1999). 18. LeMaster, D. M. Kushlan, D. M. Dynamical mapping of E-coli thioredoxin through C-13 NMR relaxation evaluation. J. Am. Chem. Soc. 118, 9255264 (1996). 19. Maltsev, A. S., Ying, J. F. Bax, A. Deuterium isotope shifts for backbone H-1, N-15 and C-13 nuclei in intrinsically disordered protein alpha-synuclein. J. Biomol. NMR 54, 18191 (2012). 20. Venters, R. A., Farmer, B. T., Fierke, C. A. Spicer, L. D. Characterizing the usage of perdeuteration in NMR studies of substantial proteins C-13, N-15 and H-1 assignments of human carbonic anhydrase II. J. Mol. Biol. 264, 1101116 (1996). 21. Bennett, A. E. et al. Homonuclear radio frequency-driven recoupling in rotating solids. J. Chem. Phys. 108, 9463479 (1998). 22. Cornilescu, G., Delaglio, F. Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 28902 (1999). 23. Shen, Y., Delaglio, F., Cornilescu, G. Bax, A. TALOS plus: a Flufiprole Inhibitor hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 21323 (2009). 24. Bagos, P. G., Liakopoulos, T. D., Spyropoulos, I. C. Hamodrakas, S. J. PREDTMBB: a net server for predicting the topology of beta-barrel outer membrane proteins. Nucleic Acids Res. 32, W400 404 (2004). 25. Linge, J. P., Habeck, M., Rieping, W. Nilges, M. ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19, 31516 (2003). 26. Rieping, W. et al. ARIA2: automated NOE assignment and information integration in NMR structure calculation. Bioinformatics 23, 38182 (2007). 27. Grosse, W. et al. Structural and functional characterization of a synthetically modified OmpG. Bioorg. Med. Chem. 18, 7716723 (2010). 28. Korkmaz-Ozkan, F., Koster, S., Kuhlbrandt, W., Mantele, W. Yildiz, O. Correlation between the OmpG secondary structure and its pH-dependent alterations monitored by FTIR. J. Mol. Biol. 401, 567 (2010). 29. Damaghi, M. et al. pH-dependent interactions guide the folding and gate the transmembrane pore on the beta-barrel membrane protein OmpG. J. Mol. Biol. 397, 87882 (20.

By mPEGS 1