So cause replication stress and induce fragile site instability [17]. In our study, the A196 expression of HPV16 E6E7 is a typical example of activation of growth signaling pathways. This is because HPV16 E6 and E7 inactivate p53 and Rb, respectively, both of which play essential roles in inhibiting cell proliferation. Intriguingly, our data showed that epithelial cell lines derived from different organ sites (esophageal and cervical epithelial cells) consistently exhibited preferential pericentromeric instability upon expression of HPV16 E6E7. It appears that pericentromeric instability plays a more prominent role than nonpericentromeric instability in contributing to gross chromosome aberration formation in HPV16 E6E7-expressing cells. It is relevant to note that pericentromeric or centromeric aberrations have been reported to be a common form of chromosome aberrations in cervical cancers [7,16], as well as in many other types of cancer [4?2]. Since cancer cells commonly face replication stress from the earliest stages of cancer development in vivo [17], and the inactivation of p53 and/or Rb pathway occurs in most cancers, we infer that our findings in this study may have important implications for genomic instability, particularly pericentromeric instability, in cancer cells. In summary, pericentromeric instability was found to be a general phenomenon in human cells expressing HPV16 E6 and E7, and was enhanced by aphidicolin-induced replication stress in successive cell generations. Since cancer development is associated with replications stress, and inactivation of p53 and Rb pathway is common in cancer cells, our finding that pericentromeric regions are refractory to prompt repair after replication stress-induced breakage in HPV16 E6E7-expressing epithelial cells may shed light on mechanism of general pericentromeric instability in cancer.Materials and Methods Cell Lines, Cell Culture and Growth MediaTwo cervical epithelial cell lines (86168-78-7 NC104-E6E7hTERT and NC105-E6E7hTERT) [29] and two esophageal epithelial cell lines (NE1-E6E7hTERT and NE2-E7E7hTERT) were immortalized by expression of HPV16-E6E7 and hTERT. The esophageal epithelial cell line NE2-hTERT was immortalized by expression of hTERT alone [32], whereas the immortalized cervical epithelial cell line NC104-shp16-hTERT was recently established in our laboratory by knockdown of p16 and expression of hTERT and was of the same cell origin as NC104-E6E7hTERT [29]. All cell lines were cultured in T-25 culture flasks at 37uC in 5 CO2 incubators. The culture medium was a 1:1 mixture of defined keratinocyte serum-free medium (dKSFM, Gibco, Grand Island, NY, USA) and Epilife (Cascade Biologics, Portland, OR, USA) with the provided supplements. Culture medium was refreshed every three days. Aphidicolin, purchased from Sigma-Aldrich (St. Louis, MO, USA), was dissolved in dimethyl sulfoxide (DMSO).are rapidly end-joined [22]. On the other hand, it has been recently discovered that hyper-condensation of chromatin 1379592 during mitosis enhances DNA breakage in some fragile sites [22]. During mitosis, pericentromeric chromatin is known to be highly condensed. It is possible that this specific feature of pericentromeric chromatin may lead to preferential DNA rupture in pericentromeric regions during mitosis. The broken chromatids in pericentromeric regions may be more difficult to repair through end-joining than non-pericentromeric ends, particularly in cells with defect in DNA damage repair. The un-rej.So cause replication stress and induce fragile site instability [17]. In our study, the expression of HPV16 E6E7 is a typical example of activation of growth signaling pathways. This is because HPV16 E6 and E7 inactivate p53 and Rb, respectively, both of which play essential roles in inhibiting cell proliferation. Intriguingly, our data showed that epithelial cell lines derived from different organ sites (esophageal and cervical epithelial cells) consistently exhibited preferential pericentromeric instability upon expression of HPV16 E6E7. It appears that pericentromeric instability plays a more prominent role than nonpericentromeric instability in contributing to gross chromosome aberration formation in HPV16 E6E7-expressing cells. It is relevant to note that pericentromeric or centromeric aberrations have been reported to be a common form of chromosome aberrations in cervical cancers [7,16], as well as in many other types of cancer [4?2]. Since cancer cells commonly face replication stress from the earliest stages of cancer development in vivo [17], and the inactivation of p53 and/or Rb pathway occurs in most cancers, we infer that our findings in this study may have important implications for genomic instability, particularly pericentromeric instability, in cancer cells. In summary, pericentromeric instability was found to be a general phenomenon in human cells expressing HPV16 E6 and E7, and was enhanced by aphidicolin-induced replication stress in successive cell generations. Since cancer development is associated with replications stress, and inactivation of p53 and Rb pathway is common in cancer cells, our finding that pericentromeric regions are refractory to prompt repair after replication stress-induced breakage in HPV16 E6E7-expressing epithelial cells may shed light on mechanism of general pericentromeric instability in cancer.Materials and Methods Cell Lines, Cell Culture and Growth MediaTwo cervical epithelial cell lines (NC104-E6E7hTERT and NC105-E6E7hTERT) [29] and two esophageal epithelial cell lines (NE1-E6E7hTERT and NE2-E7E7hTERT) were immortalized by expression of HPV16-E6E7 and hTERT. The esophageal epithelial cell line NE2-hTERT was immortalized by expression of hTERT alone [32], whereas the immortalized cervical epithelial cell line NC104-shp16-hTERT was recently established in our laboratory by knockdown of p16 and expression of hTERT and was of the same cell origin as NC104-E6E7hTERT [29]. All cell lines were cultured in T-25 culture flasks at 37uC in 5 CO2 incubators. The culture medium was a 1:1 mixture of defined keratinocyte serum-free medium (dKSFM, Gibco, Grand Island, NY, USA) and Epilife (Cascade Biologics, Portland, OR, USA) with the provided supplements. Culture medium was refreshed every three days. Aphidicolin, purchased from Sigma-Aldrich (St. Louis, MO, USA), was dissolved in dimethyl sulfoxide (DMSO).are rapidly end-joined [22]. On the other hand, it has been recently discovered that hyper-condensation of chromatin 1379592 during mitosis enhances DNA breakage in some fragile sites [22]. During mitosis, pericentromeric chromatin is known to be highly condensed. It is possible that this specific feature of pericentromeric chromatin may lead to preferential DNA rupture in pericentromeric regions during mitosis. The broken chromatids in pericentromeric regions may be more difficult to repair through end-joining than non-pericentromeric ends, particularly in cells with defect in DNA damage repair. The un-rej.

By mPEGS 1